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ABSTRACT

The oscillation of a gas bubble produced as a result of underwater explosion could
cause the severe whipping damage on nearby marine vehicle. The effects of rigid boundary
curvatures to explosion gas bubble oscillation behavior in underwater were investigated.
The analyses were conducted using a multimaterial Lagrangian-Eulerian finite element
code, MSC/DYTRAN. The incident shock wave pressure, bubble pulse pressure, gas
bubble radius and period were calculated for the case of detonation of a charge near the
curved rigid boundary. The results were compared for the case of free field bubble

oscillations.
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I. INTRODUCTION

When a charge detonates in underwater, it emits energy to the surrounding water and
converts the original material into a gas sphere (called the bubble) at very high temperature
and pressure. The emitted energy, which has about half of the energy of the explosion,
appears as a shock wave. During the transmission of the shock wave to the surrounding
fluid, the initial high pressure in the gas sphere is considerably decreased, but it 1s still
much higher than the surrounding pressure, which is atmospheric plus hydrostatic
pressure. As the shock wave passes each water particle, the water particle attains a radial
velocity. This motion of the water particle behind the shock wave front is essentially
incompressible flow after the pressure in the water drops to near hydrostatic pressure. Thus
it is reasonable to use incompressible flow th¢ory to describe the bubbles motion and
behavior. Initially, the bubble has a large outward velocity and its diameter increases
rapidly. The expansion continues for a relatively long time, and the internal bubble pressure
decreases gradually, but the motion persists because of the inertia of the outward flowing
water. At a later time, the pressure in the bubble falls below the equilibrium value
determined by the surrounding pressure and the pressure defect brings the outward flow to
stop and the bubble begins to contract at an increasing rate. As bubble approaches
minimum radius, the bubble produces a pressure pulse, called the bubble pulse. The bubble

pulse can give a radial velocity to water particle and cause damage just as the initial shock




wave can. The bubble contains about half of the total explosion energy[Ref. 1]. Explosions
in air emits a shock wave which has the most of explosion energy, and do not form a
bubble like an underwater explosion. In underwater explosion analysis, the bubble can be

as important as the initial shock wave.

Explosive gas bubble behavior in the free field case and several simple boundary cases
was studied by Chisum[Ref.2]. The effects of rigid boundary curvatures on gas bubble
oscillation behavior in underwater explosions was investigated. The ar;alyses were
conducted using the multimaterial Lagrangian-Eulerian finite element code MSC/DYTRAN.
The incident shock wave pressure, bubble pulse pressure, gas bubble radius and period
were calculated for the detonation of a charge near various curved rigid boundaries. The

results were compared with the free field bubble oscillation.



II. NUMERICAL COMPUTER CODE

In this study, the materials analyzed are fluids ( gas and seawater ). The Eulerian
finite element technique, which is frequently used for analyses of fluids or materials that
undergo very large deformations, and in which the grid points are fixed in space and the
material moves through the Eulerian mesh (see Figure 1) is used. The mass, momentum
and energy of the material are transported from element to element. The Eulerian method
calculates the motion of material through elements of constant volume with respect to
time(see Figure 2). MSC/DYTRAN is capable of finite element analyses using to 9 Eulerian
materials. In the MSC/DYTRAN code, the Eulerian mesh is defined in exactly the same
manner as a Lagrangian mesh. General connectivity is used, so the Eulerian mesh can be of
an arbitrary shape and have an arbitrary numbering system. This offers considerably more
flexibility than the logical rectangular meshes used in other Eulerian codes. However, the
use of an Eulerian mesh is different from that of the Lagrangian type. The most important
aspect of modeling with the Eulerian technique is that the mesh must be large enough to
contain the material after deformation. A basic Eulerian mesh acts like a container and,
unless specifically defined,‘ material cannot leave the mesh. Stress wave reflections and

pressure built-up can develop from an Eulerian mesh that is too small for the analysis.
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Figure 1.  Transportation of Mass, Momentum and Energy through Eulerian Elements

Figure 2. Motion of Material through Eulerian Elements
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I1I. MODELING AND SIMULATION

In order to investigate the effects of rigid boundary curvature on explosion gas bubble
behavior, the free field case which has no boundary was analyzed first, to provide basic
information about the bubble. Cases in which the explosion takes place near a flat rigid
boundary were then simulated, to compare to cases with curved rigid boundaries. Finally,
curved rigid boundary cases were analyzed. In this study, the charge modeled is a 10.24kg
cylinder of TNT, 20cm in a diameter and 20cm height, submerged in a seawater at a depth
of 1000m. The TNT was modeled using a Jones-Wilkins-Lee (JWL) equation of state,
with standard equations and parameters for TNT [Ref. 4]. With this equation, the pressure
in the “burned fraction” of the explosive material is related to the specific internal ehergy

and density by :

& &
" +B(1—%)e " +onp,E (1)

on
p=Al-—")e
R,
where n=pp,
p o= initial density
E = specific internal energy (per unit mass)

A, B, w, R, R, are constants for the explosive
The explosive was modeled as a homogeneous mass of TNT. The equation of state

parameters used were :




P, =1630 kg/ m?
E =20076 J/kg
A =3.712x10" Pa

B =3.231x10° Pa
® =030

R, =4.15

R, =0.95
d=6390 m/s

In order to model the seawater in which the explosion occurs, a polynomial equation of
state was used. This state of equation relates the pressure in the fluid to the acoustic

condensation W and the specific internal energy by;

p=a+a,u*+au’+(b, +bu+b,u*)pE (n>0)
(2
p=ai +(by +bu)p,E (n<0)
where 1 = (p-po)/P,

P, = initial density
E = specific internal energy (per unit mass)

a,,a,,a,,b,,b,, b, are constants for the fluid
and the upper equation applies to a fluid in a compressed state, while the lower applies to a

fluid in a expanded state. Constants were determined by Chisum [Ref. 2].

A. FREE FIELD CASE

The free field case was investigated first. As deep submerged charges are known to

undergo little vertical migration due to gravity [Ref. 1], a quasi one dimensional finite



element model, in which gravity is neglected entirely, was used for this analysis. The

problem thus has spherical symmetry. The geometry of this problem is shown in Figure 3.

p (atm) = 0.1013 MPa

N4

p (atm) = 0.1013 MPa
p=1025 kg/m®

y=1000m distance r = 0.71m g =9.80665 m/s> (1)
de > p.. =p(atm) + pgy
I (=10.15MPa)

charge (10.24kg TNT) pressure measure point (r : standoff distance)
Figure3.  Deep Spherical Bubble Problem Geometry

The overall geometry of the finite element model for this quarter symmetry
axisymmetric free field analysis is shown in Figure 4, from a three dimensional
perspective. Figure 5 shows the complete finite element model for this analysis from a two
dimensional perspective. The distance of 400m from the charge to the boundary was
chosen because at this distance, reflected wave form the boundary did not affect the results
during this analysis. A close up view of the lower right corner of Figure 5, which includes
the “central” which was a refined region near the charge and “transition” region which
was used to connect the central and outside regions, and a small portion of the “outside”
region which can be thought of as “storing” energy and momentum during bubble

expansion, which then effects bubble collapse after the momentum field reverses direction,




\

Figure 4. Overall Model Geometry for Quarter Symmetry Axisymmetric

Finite Element Model for Free Field Case
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Figure 5. Quarter Symmetry Axisymmetric Finite Element Model for Free Field Case




Close Up View of Finite Element Model in Area near Charge

Figure 6.

for Free Field Case
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is shown in Figure 6. The black area represent the charge. For simplicity in model
generation, the two angled faces in the models which appear to meet at the y-axis are
actually offset a very small distance (+ Sum) ;they thus make an angle of %1 degree not
from the xy-plane at z=0, but from the xy-plane at z=+ 5um and z=- Sum, respectively.
This small offset can not be seen on any reasonable scale (it is small even in comparison
with the other dimensions of the smallest elements), and permits the model to be meshed

using only hexahedron elements.

Figure 7 shows the bubble radius time history. The maximum radius (r;) is about
0.71m, and the period T; is about 14.7 milliseconds. Figure 8 shows the total pressure
time history. This pressure was measured at 0.71m (same as maximum bubble radius)
from the charge center in the horizontal direction. The shock wave pressure and first bubble
pulse peak pressure were about 270 MPa and 46 MPa, and occurred at 0.5 and 14.7
milliseconds, respectively. The second and third bubble pulse magnitudes are not clear, but
are still higher than the surrounding pressure (10.15 MPa). Empiriéal equations for TNT

[Ref. 1] predict a bubble radius, period and dynamic'pressure given by :

maximum bubble radius
. .
R__=3.382 =) 3 m
max X Dil 0) (m)
bubble period
1
w3
T =2064————= (second) 3
(D +10)¢

11
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dynamic pressure
1

WS
F‘max =52.1 18('T')1'18 (MPa)

where D = charge depth (1)
L = standoff distance (m)
W = charge weight (kg)

These empirical equations give a maximum bubble radius of 0.71 m, a first oscillation
bubble period of 14.06 milliseconds, and a total shock wave pressure of 205 MPa. These
values are approximate and not much different from the values predicted by the finite
element analysis. Figure 9 shows radial velocities of a fluid particle at the same point
where the pressure was calculated. This computation was done using a spherical wave
equation aﬁd the pressure time history given in Figure 8, but using dynamic pressure vice a

total pressure. The spherical wave equation used is shown below [Ref. 5].

1 1
0,0 = (1) + = [P =P+ | T

OCO

where  u_(t) = radial velocity of fluid particle
u,(t) = initial radial velocity of fluid particle
P, = initial fluid density (1025 kg/m?)
¢, = acoustic velocity in seawater (1500 m/s)
r = standoff distance

p =dynamic pressure

From this equation it is evident that the radial velocity of a fluid particle depends on

both the pressure at that time and the pressure time history.

13




Fluid Particle Velocity (m/s}

Analysis

Spherical” Wave Byuarfon

Time (msec)

Figure 9. Radial Velocity Time History of Fluid Particle for Free Field Case
B. FLAT RIGID BOUNDARY CASE

Figure 10 shows the bubble problem geometry for the flat rigid boundary case.

pam)=01013MPa 7

p=1025 kg/m’
g =9.80665 m/s* (1)
p.. = p(atm) +pgy

(= 10.15MPa)

y=1000m distancer = r, (0.71m)

® >

h* charge (10.24 kg TNT) pressure measuring point

( rigid flat boundary ) h* : normalized standoff distance

Figure 10. Bubble Problem Geometry for Flat Rigid Boundary Case
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The typical overall geometry of a typical finite element model for a flat rigid boundary case,
and the complete finite element model, are almost same as shown in the figures for the free
field case; the distance from the charge center to the outer boundary is also the same as in
the free field case. A view of the finite element model near the charge is shown in Figure
11; the black area represents the charge. The modeling concept is the same as used in the
free field case, and was also used for the subsequent cases. In this analysis, the pressure
measuring point is same as in the free field case. The distance between the charge center
and the rigid boundary éurface is defined as a normalized standoff distance h* = h / r,
where h is the standoff distance from the charge center to the rigid boundary surface, and r;
is the maximum bubble radius for the free field case(0.71 m). Analyses were conducted for
h* values of 1.16 and 2.0 . Obviously, the free field case is the case for which h* =

infinity.

Figure 12 shows the bubble radius time histories for these cases. The maximum
bubble radii are 0.67 m for both cases. The first bubble periods (T) for the cases where h*
= 1.16 and h* = 2 are 16.6 and 15.5 milliseconds, respectively. The pressure time histories
for both cases are shown in Fi gure 13. The shock wave pressures appear at the same time
as in free field case and the magnitudes are also the same. At 1 and 1.7 milliseconds,
pressures of 86 and 38 MPa appear in Figure 13 for the cases where h* = 1.16 and 2.0,
respectively. Using the empirical equation for pressure and Snell’s law to calculate the
pressure at the pressure measuring point via bottom reflection, with a constant acoustic
velocity in seawater of 1500 m/s, the reflected total pressures are computed as 75.4 and
46.6 MPa for the both cases, and occur at 1.2 and 1.96 milliseconds, respectively. The

secondary pressure peaks at 1 and 1.7 milliseconds are therefore bottom reflected

15
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Figure 13.  Pressure Time History for Flat Rigid Boundary Case
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pressures. Bubble pulses are 31 and 38 MPa at 16.6 and 15.5 milliseconds. As h*
increases, the maximum bubble radius increases and the bubble period and reflected
pressure decrease, approaching the results from the free field case. If standoff distance
h>c,T,/2, where ¢, is the acoustics wave velocity (1500 m/s) and T, (14.7
milliseconds) is the bubble period for the free field case, the flat rigid boundary cases will
be treated as the free field case. So in cases where ﬁ* > 15.5 are considered as the free field

case. This is because the bubble behavior will not be affected in the first bubble period by

the boundary when h'>155.

Figure 14 and 15 show the maximum bubble radius, non-dimentionalized dividing by
r, ( radius for free field case ), and the first bubble period, non-dimentionalized dividing by
T, ( period for free field case ), versus the normalized standoff distance h*. The cases for

h*=1 and 4 were calculated by Chisum [Ref.2]. In these figures, h* = 30 indicates h* =

infinity.

! -1

0.99

R/rf)

0.98 |-
097 + ¢
0.96 |

0.95

Bubble Radius Ratio (

0.94 . .
0 10 20 30

Normalized Standoff Distance h*

Figure 14. Bubble Radius Ratio vs. Normalized Standoff Distance h*
for Flat Rigid Boundary Case
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Figure 15. Period Ratio vs. Normalized Standoff Distance h*
for Flat Rigid Boundary Case
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g =9.80665 m/s* (1)

p. = p(atm) +pgy
(= 10.15MPa)

pressure measuring point

L rigid boundary with positive curvature

Figure 16. Bubble Problem Geometry for Rigid Boundary Case

with Positive Curvature
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C. CURVED RIGID BOUNDARY CASE

1. Cases With Positive Curvature

Figure 16 shows the bubble problem geometry for a rigid boundary case with positive
curvature. The finite element model for an axisymmetric rigid boundary with positive
curvature case is shown Figure 17. The distance from the charge center to the outer
boundary is 400m. Figure 18 shows the “central” region of the model; black area
represents the charge. The empty semi-circular arc represents the boundary surface with a
normalized arc radius of r* = R / r, where R is the actual arc radius. Analyses were
conducted for in which r* is equal to 1, 2, 4 and 10, and the normalized standoff distance

h* is 2.

The bubble radius time histories for each case were shown in Figure 19. Table 1 lists
the maximum bubble radius and bubble period. Figure 20 shows the pressure time
histories. Table 2 indicates the shock wave pressure, reflected pressure and first bubble
pulse. In these analyses, the bubble acts like the free field case when r* is less than 2. As

r¥ increases, the bubble behaves like the flat rigid boundary case with the same h*.

Figure 21 and 22 are rearranged to show the maximum bubble radius and first period,
non-dimentionalized by dividing by 1; ( radius for free field case ) and dividing by T,
(period for free field case), respectively, versus the normalized arc radius r*. In these

figures, r* = 30 indicates r* = infinity.
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Figure 17. Axisymmetric Finite Element Model for Rigid Boundary Case

with Positive Curvature
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Figure 18. Close Up View of Finite Element Model in Area near Charge

for Rigid Boundary Case with Positive Curvature
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Table 1. Max. Bubble Radius and First Bubble Period for Positive Curvature

r* max. bubble radius (m) | first bubble period (msec) note
0 0.71 14.7 free field case
1 0.71 14.7 h*=2
2 0.71 14.8 h*=2
4 0.70 15.0 h*=2
10 0.68 153 h*=2
infinity 0.67 15.5 flat boundary (h*=2)

Table 2. Shock Wave, Reflected Pressure and Bubble Pulse for Positive Curvature

r* shock wave reflected bubble pulse note
pressure (MPa) | pressure (MPa) (MPa)
0 270 none 46 free field case
1 275 unknown 45 h* =2
2 277 23 44 h*=2
4 277 30 44 h*=2
10 270 30 40 h*=2
infinity 270 38 38 flat boundary
(h*=2)
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2. Cases With Negative Curvature

Figure 23 shows the bubble problem geometry for a rigid boundary case with negative
curvature. The finite element model for an axisymmetric rigid boudary with negative
curvature is shown Figure 24. In this case, the charge is enclosed by the curved rigid
boundary and the distance from the charge center to the boundary is not 400m. Figure 25
shows the “central” region of the model; black area represents the charge. Analyses were

conducted for values of r* is equal to 4, 7, 9 and 13, and a normalized standoff distance h*

1s 2.

The bubble radius time histories for each case are shown in Figure 26. Table 3 lists the
maximum bubble radius and first bubble period for each case. Figure 27 shows the
pressure time histories. Table 4 indicates the shock wave pressure, reflected pressure and

first bubble pulse.

In these analyses, the charge was enclosed by a rigid boundary and distance from the
charge to the boundary was very small compared to the other cases in which the distance
was 400m. ( note that the case when r* = O is impossible ) Forvthe negative curvature
boundary cases , the results are affected by multiple reflection paths. This is already seen in
the graph for the r* = 4 case where there is a large amount of “noise”. In the r* =4 case, the
boundary is so close that it significantly effects bubble growth and collapse. As r*
increases, the bubble radius and the bubble period are seen to increase, approaching the flat .

boundary case results for large r* values, as expected.
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Figure 23. Bubble Problem Geometry for Rigid Boundary Case

with Negative Curvature

Table 3. Max. Bubble Radius and First Bubble Period for Negative Curvature

r* max. bubble radius | first bubble period note.
(m) (msec)
none 0.71 14.7 free field case

(reference)

4 0.54 7.6 h*=2

7 0.62 12.7 h*=2

9 0.64 14.2 h*=2

13 0.66 15.2 h*=2

infinity 0.67 15.5 flat boundary (h*=2)
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Close Up View of Finite Element Model in Area near Charge

Figure 25.

for Rigid Boundary Case with Negative Curvature
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Table4 Shock Wave, Reflected Pressure and Bubble Pulse for Negative Curvature
r* shock wave reflected bubble pulse note
pressure (MPa) | pressure (MPa) (MPa)
none 270 none 46 free field case
(reference)
4 278 100 123 h*¥=2
7 270 52 41 h*=2
9 270 47 33 h*=2
13 270 40 40 h* =2
infinity 270 38 38 flat boundary
(h*=2)

Figures 28 and 29 show the non-dimentionalized bubble radius and period as a

function of the normalized arc radius r*. In these figures, h* = 30 indicates h* = infinity.

D. BUBBLE SHAPE

The shapes of the bubble for the free field case, the flat rigid boundary cases with h* =

1.16 and 2 and the case with positive boundary curvature with r* = 10 and h* = 2 are

plotted in Appendix A at times t of 0.0, 0.50, 0.80, 0.90 0.95, 0.98, 0.99, and 1.00T,

where T is the first bubble period for each case. The free field case and the rigid boundary

cases with h* = 2 have similar shapes in which the bubble remains nearly spherical up to

1.00T. The case with h* = 1.16 shows a heart shaped bubble after time 0.90T. The center
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of mass of the bubble in this case is also seen to move closer to the boundary at late times.
These related phenomena are due to the effect of the boundary on the fluid flow

surrounding the charge.
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IV. CONCLUSION
A. FREE FIELD CASE

The free field case gives the basic information about the bubble behavior in an
underwater explosion. The empirical equations are valid for this case, and the spherical

wave equation can be used to calculated the fluid particle velocity with reasonable accuracy.
B. FLAT RIGID BOUNDARY CASE

The flat rigid boundary case is a special case of a curved rigid boundary case with the
normalized arc radius r * equal to infinity. The normalized standoff distance h* affects the
bubble behavior significantly. As h* increases, the bubble behavior approaches that of the
free field case. If the standoff distance h > c,T, /2, thereis no boundary effect. When h*
is small enough, the bubble is attracted to the boundary surface and the bubble becomes

heart shaped during late stages of the bubble collapse.
C. CURVED RIGID BOUNDARY CASE
1. Positive Curvature

In this case, the normalized arc radius r* influences the bubble behavior. When r*
is small enough, the bubble behavior is similar to the free field case. And as * increases,

the bubble behaves as in the flat rigid boundary case.

41




2. Negative Curvature

The normalized arc radius r* has a similar effect upon the behavior of the bubble
as in the positive curvature case. However when r* is small, there are multiple reflection

paths which effect the bubble and make the analysis of this case complicated.
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V. RECOMMENDATION

This paper describes the effects of rigid boundary curvature on the bubble behavior in
an underwater explosion. Since the boundary is rigid, this does not represent an actual

case. Next time, the flexible boundary case needs to be investigated.
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APPENDIX

(a) at Time =0.0T

(¢) atTime=0.80T

BUBBLE SHAPES

Mt —

(b) atTime =0.50T

(d) atTime =0.90T

Figure 30-1. Bubble Shape for Free Field Case
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(a) atTime =0.95T

(¢) atTime =0.99T
Figure 30-2.

(b) atTime = 0.98T

(d) atTime = 1.00T

Bubble Shape for Free Field Case



(a) atTime =0.0T

(¢) atTime =0.80T

Figure 31-1.

(b) atTime =0.50T

(d) atTime =0.90T

Bubble Shape for Flat Rigid Boundary Case with h* = 1.16
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(a) at Time =0.95T (b) atTime =0.98T

(c¢) atTime =0.99T (d) atTime=1.00T

Figure 31-2. Bubble Shape for Flat Rigid Boundary Case with h* = 1.16
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Figure 32-1.  Bubble Shape for Flat Rigid Boundary Case with h* =2
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(a) at Time =0.95T
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(¢) atTime =0.99T
Figure 32-2.
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(b) at Time =0.98T

(d) atTime=1.00T

Bubble Shape for Flat Rigid Boundary Case with h* =2
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